首页 >> 教育学 >> 教育技术学
杨现民等:教育人工智能的发展难题
2019年01月21日 11:01 来源:《现代远程教育研究》 作者:杨现民 张昊 等 字号
关键词:教育人工智能;技术框架;应用模式;发展难题;突破路径

内容摘要:教育正迈向智能化时代,人工智能与教育的融合创新已成为未来教育变革的重要趋势。

关键词:教育人工智能;技术框架;应用模式;发展难题;突破路径

作者简介:

  原题:教育人工智能的发展难题与突破路径

  作者简介:杨现民,博士,教授,江苏师范大学智慧教育研究中心,江苏省教育信息化工程技术研究中心副主任;张昊,郭利明,林秀清,李新,江苏师范大学智慧教育学院硕士研究生。徐州 221116。

  内容提要:教育正迈向智能化时代,人工智能与教育的融合创新已成为未来教育变革的重要趋势。当前教育人工智能在面向特殊人群的补偿性教育、针对常规业务的替代式教育和服务个性发展的适应性教育方面已经形成典型的应用模式。但从整体上看,教育人工智能仍处于起步发展阶段,面临四大发展难题:一是教育数据的数量与质量存在“短板”,人工智能技术的价值难以发挥;二是教育业务复杂多样,通用人工智能技术“嫁接”教育的难度增大;三是教育用户对人工智能技术存在应用价值与角色关系的双重困惑,人机信任危机难以消除;四是缺乏人工智能专业教师队伍与课程体系,人工智能融入教育进程缓慢。未来教育人工智能应在以下方面实现突破:技术研发层面,加大教育人工智能产品研发力度,提升技术服务品质;教育创新层面,拓宽人工智能教育应用空间,构建和谐共生“人机结合”新生态;合作机制方面,建立“政企学研”多方合作机制,推进多学科交叉协同融合发展;实践模式层面,建立教育人工智能示范点,以点带面,逐步推广教育人工智能应用模式。

  关 键 词:教育人工智能 技术框架 应用模式 发展难题 突破路径

  标题注释:江苏省高校哲学社会科学重点研究基地重大研究项目“信息时代智慧教育理论体系建构研究”(2015JDXM020),江苏省“333工程”科研基金资助项目“网络环境下深度学习行为分析及其促进策略研究”(333GC201702)。

  中图分类号:G434 文献标识码:A 文章编号:1009-5195(2018)03-0030-09

  一、教育步入智能化时代

  人工智能是制造智能机器的科学和工程,表现出与人类行为智能相关的特征,包括推理、学习、寻求目标、解决问题和适应性等要素(Monostori,2014)。人工智能作为社会发展的重要科技力量,迅速渗透到各行各业,成为各行业发展的新动力和新趋势。在此形势下,教育如何适应智能时代的需求,利用智能技术推进教学模式变革以及创新型人才培养,成为世界各国政府面临的重要挑战。美国2016年发布的《为人工智能的未来做好准备》提到要实施人工智能教育,扩大人工智能和数据科学课程,为人工智能推动经济发展培养需要的人才(White House,2016)。国务院2017年7月颁布的《新一代人工智能发展规划》提出要发展智能教育,利用智能技术加快推动人才培养模式以及教学方法的改革,构建包含智能学习、交互式学习的新型教育体系,推动人工智能在教学、管理、资源建设等方面的应用(国务院,2017a)。同年,国务院颁布的《国家教育事业发展“十三五”规划》也提出要“综合利用互联网、大数据、人工智能和虚拟现实等技术探索未来教育教学新模式”(国务院,2017b)。可见,利用人工智能技术推进教育系统的变革与创新已经引起世界各国的高度关注。

  当前,我国教育改革虽然取得了显著进步,但仍存在一些突出问题,比如教育发展不均衡,创新型人才培养模式不完善以及优质教育资源配置不合理等。随着智能化时代的到来,人工智能将成为破解这些教育难题的“利器”,在创新教育教学模式、优化人才培养方案、发展学生专业技能、构建终身学习体系等方面发挥重要作用,推动未来教育的变革与发展。

  近年来,国内教育领域的专家学者围绕教育人工智能的内涵与关键技术(闫志明等,2017)、智能教育的内涵与目标定位(张进宝等,2018)、人工智能对混合式教学的促进(戴永辉等,2018)以及深度学习与机器学习的创新教育应用(刘勇等,2017;余明华等,2017)等进行了初步探讨。但是,教育研究者和实践者对于人工智能与教育融合发展过程中的一些基础性问题的认识仍较为模糊,比如教育人工智能技术框架、应用模式、发展难题等。基于此,本研究将构建教育人工智能的技术框架,探讨教育人工智能的典型应用模式以及发展过程中面临的难题,并在此基础上提出教育人工智能的发展路径,以期对人工智能与教育的融合发展提供一定的借鉴。

  二、教育人工智能的技术框架

  人工智能的发展经历过三次浪潮,分别是计算智能时代、感知智能时代和认知智能时代,人工智能教育应用伴随这三类智能技术的发展而不断发展。吴永和等认为,“人工智能+教育”的相关技术有机器学习、深度学习、自然语言处理、神经网络、学习计算、图像识别等(吴永和等,2017);闫志明等指出,教育人工智能的关键技术主要有知识表示方法、机器学习与深度学习、自然语言处理、智能代理、情感计算(闫志明等,2017)。根据前期的调研分析以及相关学者的研究,笔者构建了教育人工智能的技术框架,主要包括教育数据层、算法层、感知层、认知层和教育应用层(见图1)。

  

图1 教育人工智能的技术框架

作者简介

姓名:杨现民 张昊 等 工作单位:

转载请注明来源:中国社会科学网 (责编:毕雁)
W020180116412817190956.jpg
用户昵称:  (您填写的昵称将出现在评论列表中)  匿名
 验证码 
所有评论仅代表网友意见
最新发表的评论0条,总共0 查看全部评论

回到频道首页
QQ图片20180105134100.jpg
jrtt.jpg
wxgzh.jpg
777.jpg
内文页广告3(手机版).jpg
中国社会科学院概况|中国社会科学杂志社简介|关于我们|法律顾问|广告服务|网站声明|联系我们